Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-18419268

RESUMO

The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus.


Assuntos
Borboletas/fisiologia , Ritmo Circadiano/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Borboletas/anatomia & histologia , Borboletas/genética , Ritmo Circadiano/genética , Criptocromos , Flavoproteínas/genética , Flavoproteínas/fisiologia , Genes de Insetos , Geografia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Modelos Biológicos , Luz Solar , Fatores de Tempo
2.
Brain Res Mol Brain Res ; 92(1-2): 19-26, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11483238

RESUMO

The molecular mechanism of the circadian pacemaker depends on the oscillatory expression of clock gene constituents. The Drosophila period gene is central to the clock mechanism in these animals. Three homologs of this gene identified in mice (mPer1-3) and humans (hPer1-3) display rhythmic expression and are important for normal clock function. Recently, analysis of the draft sequence of the human genome has revealed the presence of a fourth Per gene family member. Surprisingly, the deduced hPer4 cDNA has no open reading frame encoding a full-length PER-like protein. This sequence is characterized by numerous deletions, insertions, frame shifts and base pair changes, and its genomic structure is devoid of introns. The presence of an MER-2 mobile element fossil within the Per4 locus predicted that this gene would also be present in non-human primates. Rhesus monkey Per4 displays similar sequence anomalies and is 92.8% identical to hPer4. Sequence comparisons indicate that Per4 originated from a Per3 predecessor and that it is relatively new to the Period gene family. We conclude that hPer4 and RmPer4 are pseudogenes and descended from the retrotransposition of an ancestral Per3 gene.


Assuntos
Ritmo Circadiano/fisiologia , Pseudogenes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Ritmo Circadiano/genética , DNA Complementar/genética , Drosophila melanogaster/genética , Evolução Molecular , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Macaca mulatta/genética , Dados de Sequência Molecular , Retroelementos/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
3.
Neuron ; 30(2): 525-36, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11395012

RESUMO

The role of mPer1 and mPer2 in regulating circadian rhythms was assessed by disrupting these genes. Mice homozygous for the targeted allele of either mPer1 or mPer2 had severely disrupted locomotor activity rhythms during extended exposure to constant darkness. Clock gene RNA rhythms were blunted in the suprachiasmatic nucleus of mPer2 mutant mice, but not of mPER1-deficient mice. Peak mPER and mCRY1 protein levels were reduced in both lines. Behavioral rhythms of mPer1/mPer3 and mPer2/mPer3 double-mutant mice resembled rhythms of mice with disruption of mPer1 or mPer2 alone, respectively, confirming the placement of mPer3 outside the core circadian clockwork. In contrast, mPer1/mPer2 double-mutant mice were immediately arrhythmic. Thus, mPER1 influences rhythmicity primarily through interaction with other clock proteins, while mPER2 positively regulates rhythmic gene expression, and there is partial compensation between products of these two genes.


Assuntos
Ritmo Circadiano/genética , Atividade Motora/fisiologia , Proteínas Nucleares/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Biológicos , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Clonagem Molecular , Regulação da Expressão Gênica , Biblioteca Genômica , Genótipo , Homozigoto , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Atividade Motora/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Circadianas Period , Periodicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição , Transcrição Gênica
5.
Nature ; 409(6822): 829-31, 2001 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11237000

RESUMO

The cloning and characterization of 'clock gene' families has advanced our understanding of the molecular control of the mammalian circadian clock. We have analysed the human genome for additional relatives, and identified new candidate genes that may expand our knowledge of the molecular workings of the circadian clock. This knowledge could lead to the development of therapies for treating jet lag and sleep disorders, and add to our understanding of the genetic contribution of clock gene alterations to sleep and neuropsychiatric disorders. The human genome will also aid in the identification of output genes that ultimately control circadian behaviours.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Genoma Humano , Animais , Caenorhabditis , Proteínas de Ciclo Celular , Fenômenos Cronobiológicos , Drosophila , Projeto Genoma Humano , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética
6.
Annu Rev Physiol ; 63: 647-76, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11181971

RESUMO

In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.


Assuntos
Química Encefálica/genética , Ritmo Circadiano/fisiologia , Proteínas de Drosophila , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas CLOCK , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cell ; 107(7): 855-67, 2001 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11779462

RESUMO

We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during negative transcriptional feedback. CLOCK:BMAL1 heterodimers remain bound to DNA over the circadian cycle. The temporal increase in mPER abundance controls the negative feedback interactions. Analysis of clock proteins in mCRY-deficient mice shows that the mCRYs are necessary for stabilizing phosphorylated mPER2 and for the nuclear accumulation of mPER1, mPER2, and CKIepsilon. We also provide in vivo evidence that casein kinase I delta is a second clock relevant kinase.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas Nucleares/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Caseína Quinases , Proteínas de Ciclo Celular , Fígado/fisiologia , Camundongos , Proteínas Circadianas Period , Fosforilação , Proteínas Quinases , Fatores de Transcrição
9.
Semin Perinatol ; 24(4): 243-6, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10975430

RESUMO

In mammals, a master circadian clock resides in the suprachiasmatic nuclei of the anterior hypothalamus. The suprachiasmatic nuclei is composed of multiple, single-cell circadian oscillators, which, when synchronized, lead to coordinated circadian outputs that ultimately regulate overt rhythms. Several "clock genes" have been cloned that are involved in interacting transcriptional/translational feedback loops that comprise the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of 2 clock genes that reset the core clock mechanism. Output genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Greater understanding of the cellular and molecular control of the suprachiasmatic nuclei provides opportunities for pharmacological manipulation of circadian timing.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas do Olho , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Animais , Proteínas de Ciclo Celular , Criptocromos , Retroalimentação , Flavoproteínas/genética , Humanos , Luz , Neurônios/fisiologia , Proteínas Nucleares/genética , Proteínas Circadianas Period , Receptores Acoplados a Proteínas G , Fatores de Transcrição
10.
Mol Cell Biol ; 20(17): 6269-75, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10938103

RESUMO

Neurons in the mammalian suprachiasmatic nucleus (SCN) contain a cell-autonomous circadian clock that is based on a transcriptional-translational feedback loop. The basic helix-loop-helix-PAS proteins CLOCK and BMAL1 are positive regulators and drive the expression of the negative regulators CRY1 and CRY2, as well as PER1, PER2, and PER3. To assess the role of mouse PER3 (mPER3) in the circadian timing system, we generated mice with a targeted disruption of the mPer3 gene. Western blot analysis confirmed the absence of mPER3-immunoreactive proteins in mice homozygous for the targeted allele. mPer1, mPer2, mCry1, and Bmal1 RNA rhythms in the SCN did not differ between mPER3-deficient and wild-type mice. Rhythmic expression of mPer1 and mPer2 RNAs in skeletal muscle also did not differ between mPER3-deficient and wild-type mice. mPer3 transcripts were rhythmically expressed in the SCN and skeletal muscle of mice homozygous for the targeted allele, but the level of expression of the mutant transcript was lower than that in wild-type controls. Locomotor activity rhythms in mPER3-deficient mice were grossly normal, but the circadian cycle length was significantly (0.5 h) shorter than that in controls. The results demonstrate that mPer3 is not necessary for circadian rhythms in mice.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas do Olho , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Células Fotorreceptoras de Invertebrados , Fatores de Transcrição ARNTL , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Comportamento Animal , Northern Blotting , Southern Blotting , Western Blotting , Proteínas de Ciclo Celular , Criptocromos , Flavoproteínas/biossíntese , Biblioteca Gênica , Genótipo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Músculo Esquelético/metabolismo , Mutagênese , Proteínas Nucleares/biossíntese , Proteínas Circadianas Period , Testes de Precipitina , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/biossíntese , Transcrição Gênica
11.
Nat Neurosci ; 3(8): 755-6, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10903565

RESUMO

The timeless (tim) gene is essential for circadian clock function in Drosophila melanogaster. A putative mouse homolog, mTimeless (mTim), has been difficult to place in the circadian clock of mammals. Here we show that mTim is essential for embryonic development, but does not have substantiated circadian function.


Assuntos
Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proteínas CLOCK , Proteínas de Ciclo Celular , Quimera , Ritmo Circadiano/genética , Genes Reporter , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Luciferases/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Proteínas Recombinantes/metabolismo , Spodoptera , Transativadores/genética , Transfecção
12.
Science ; 288(5468): 1013-9, 2000 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-10807566

RESUMO

We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2(Brdm1) mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Biológicos/genética , Proteínas CLOCK , Proteínas de Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Criptocromos , Dimerização , Retroalimentação , Feminino , Flavoproteínas/genética , Regulação da Expressão Gênica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Circadianas Period , Biossíntese de Proteínas , RNA/metabolismo , Receptores Acoplados a Proteínas G , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
13.
Genes Dev ; 14(6): 679-89, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10733528

RESUMO

DBP, the founding member of the PAR leucine zipper transcription factor family, is expressed according to a robust daily rhythm in the suprachiasmatic nucleus and several peripheral tissues. Previous studies with mice deleted for the Dbp gene have established that DBP participates in the regulation of several clock outputs, including locomotor activity, sleep distribution, and liver gene expression. Here we present evidence that circadian Dbp transcription requires the basic helix-loop-helix-PAS protein CLOCK, an essential component of the negative-feedback circuitry generating circadian oscillations in mammals and fruit flies. Genetic and biochemical experiments suggest that CLOCK regulates Dbp expression by binding to E-box motifs within putative enhancer regions located in the first and second introns. Similar E-box motifs have been found previously in the promoter sequence of the murine clock gene mPeriod1. Hence, the same molecular mechanisms generating circadian oscillations in the expression of clock genes may directly control the rhythmic transcription of clock output regulators such as Dbp.


Assuntos
Ritmo Circadiano , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas CLOCK , Primers do DNA , Desoxirribonuclease I/metabolismo , Íntrons , Fígado/metabolismo , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo , Transcrição Gênica/fisiologia , Transfecção
14.
Neuron ; 25(2): 437-47, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10719897

RESUMO

The circadian clock in the suprachiasmatic nuclei (SCN) is comprised of a cell-autonomous, autoregulatory transcriptional/translational feedback loop. Its molecular components include three period and two cryptochrome genes. We describe circadian patterns of expression of mPER2 and mPER3 in the mouse SCN that are synchronous to those for mPER1, mCRY1, and mCRY2. Coimmunoprecipitation experiments demonstrate in vivo associations of the SCN mPER proteins with each other and with the mCRY proteins, and of mCRY proteins with mTIM, but no mPER/mTIM interactions. Examination of the effects of weak and strong resetting light pulses on SCN clock proteins highlights a central role for mPER1 in photic entrainment, with no acute light effects on either the mCRY or mTIM proteins. These clock protein interactions and photic responses in mice are divergent from those described in Drosophila.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas do Olho , Proteínas Nucleares/genética , Células Fotorreceptoras de Invertebrados , Filogenia , Animais , Proteínas de Ciclo Celular , Criptocromos , Drosophila , Flavoproteínas/análise , Flavoproteínas/genética , Expressão Gênica/fisiologia , Variação Genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas Nucleares/análise , Proteínas Circadianas Period , Estimulação Luminosa , RNA Mensageiro/análise , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição
15.
Endocrinology ; 141(3): 1236-44, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10698201

RESUMO

To delineate domains of high affinity melatonin receptors that are essential for melatonin binding, we generated chimeras between the human Mel1a melatonin receptor and the melatonin-related orphan H9 receptor. The latter receptor displays no high affinity melatonin binding. The chimeric receptors were transiently expressed in COS-7 cells and analyzed by radioligand binding using 2-[126I]iodomelatonin ([125I]Mel). Replacement of individual transmembrane domains (TMs) of the Mel1a receptor by the corresponding H9 helixes revealed that TM6 plays a critical role in ligand binding. Substitution of H9-TM6 into the Mel1a receptor abolished any detectable [125I]Mel binding, whereas the remaining TMs could be readily exchanged without affecting ligand binding. Subsequent site-directed mutagenesis showed that glycine 20 in TM6 of the Mel1a receptor occupies an important position in the binding site. Thus, the mutation of glycine 20 to threonine, the corresponding H9 residue, severely reduced the receptor's affinity for melatonin. Furthermore, the double mutation of alanine 14 to cysteine and of glycine 20 to threonine in TM6 completely eliminated high affinity [125I]Mel binding. This strongly suggests that molecular modifications in TM6 that involve glycine 20 lead to steric incompatibilities in the binding pocket that prohibit high affinity melatonin binding.


Assuntos
Substituição de Aminoácidos/genética , Glicina/genética , Mutação Puntual/genética , Receptores de Superfície Celular/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Membrana Celular/metabolismo , Técnica Direta de Fluorescência para Anticorpo , Humanos , Melatonina/análogos & derivados , Melatonina/metabolismo , Dados de Sequência Molecular , Ligação Proteica/genética , Ensaio Radioligante , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Melatonina , Especificidade da Espécie
16.
Neuron ; 25(1): 123-8, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10707977

RESUMO

The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo.


Assuntos
Relógios Biológicos/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Baclofeno/farmacologia , Relógios Biológicos/efeitos dos fármacos , Células Cultivadas , Agonistas GABAérgicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/citologia , Receptores de GABA-A/fisiologia , Núcleo Supraquiasmático/química
17.
Cell ; 98(2): 193-205, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10428031

RESUMO

We determined that two mouse cryptochrome genes, mCry1 and mCry2, act in the negative limb of the clock feedback loop. In cell lines, mPER proteins (alone or in combination) have modest effects on their cellular location and ability to inhibit CLOCK:BMAL1 -mediated transcription. This suggested cryptochrome involvement in the negative limb of the feedback loop. Indeed, mCry1 and mCry2 RNA levels are reduced in the central and peripheral clocks of Clock/Clock mutant mice. mCRY1 and mCRY2 are nuclear proteins that interact with each of the mPER proteins, translocate each mPER protein from cytoplasm to nucleus, and are rhythmically expressed in the suprachiasmatic circadian clock. Luciferase reporter gene assays show that mCRY1 or mCRY2 alone abrogates CLOCK:BMAL1-E box-mediated transcription. The mPER and mCRY proteins appear to inhibit the transcriptional complex differentially.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/genética , Células Fotorreceptoras de Invertebrados , Células 3T3 , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Western Blotting , Proteínas CLOCK , Células COS , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Criptocromos , Retroalimentação/fisiologia , Feminino , Flavoproteínas/análise , Flavoproteínas/metabolismo , Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
18.
J Neurosci ; 19(12): RC11, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10366649

RESUMO

Recent discoveries have identified a framework for the core circadian clock mechanism in mammals. Development of this framework has been based entirely on the expression patterns of so-called "clock genes" in the suprachiasmatic nuclei (SCN), the principal clock of mammals. We now provide data concerning the protein expression patterns of two of these genes, mPer1 and mTim. Our studies show that mPER1 and mTIM are nuclear antigens expressed in the SCN and extensively throughout the forebrain. Expression of mPER1 in the SCN was rhythmic under entrained conditions and with clear circadian cycling under free-running conditions. Expression of mPER1 elsewhere in the mouse forebrain was not rhythmic. In contrast to mPER1, mTIM expression in the SCN did not vary with time in mice housed in either a light/dark cycle or in constant dim red light. The phase relationship between mPer1 RNA and mPER1 cycles in the SCN is consistent with a negative feedback model of the mammalian clock. The invariant nature of nuclear mTIM in the SCN suggests that its participation in negative feedback occurs only after mPER1 has entered the nucleus, and that the abundance of mTIM is not regulated by the circadian clock or the light/dark cycle.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos ICR , Proteínas Nucleares/genética , Especificidade de Órgãos , Proteínas Circadianas Period , Hipófise/metabolismo , Hipófise/ultraestrutura , Núcleo Supraquiasmático/ultraestrutura , Fatores de Transcrição/genética
19.
Neuroscience ; 89(2): 387-97, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10077321

RESUMO

The suprachiasmatic nuclei contain a circadian clock that drives rhythmicity in physiology and behavior. In mice, mutation of the Clock gene produces abnormal circadian behavior [Vitaterna M. H. et al. (1994) Science 264, 715-725]. The Clock gene encodes a protein containing basic helix-loop-helix and PAS (PER-ARNT-SIM) domains [King D. P. et al. (1997) Cell 89, 641-653]. The PAS domain may be an important structural feature of a subset of genes involved in photoreception and circadian rhythmicity. The expression and regulation of messenger RNAs encoding eight members of the basic helix-loop-helix/PAS protein superfamily were examined by in situ hybridization. Six of the genes studied (aryl hydrocarbon receptor nuclear transporter, aryl hydrocarbon receptor nuclear transporter-2, Clock, endothelial PAS-containing protein, hypoxia-inducible factor-1alpha and steroid receptor coactivator-1) were expressed in the suprachiasmatic nucleus of adult and neonatal mice. No evidence for rhythmicity of expression was observed when comparing brains collected early in the subjective day (circadian time 3) with those collected early in subjective night (circadian time 15). Neuronal PAS-containing protein-1 messenger RNA was expressed in the suprachiasmatic nucleus of adult (but not neonatal) mice, and a low-amplitude rhythm of neuronal PAS-containing protein-1 gene expression was detected in the suprachiasmatic nucleus. Neuronal PAS-containing protein-2 messenger RNA was not detected in adult or neonatal suprachiasmatic nucleus. Exposure to light at night (30 or 180 min of light, beginning at circadian time 15) did not alter the expression of any of the genes studied. The expression of multiple members of the basic helix-loop-helix/PAS family in the suprachiasmatic nucleus suggests a rich array of potential interactions relevant to the regulation of the suprachiasmatic circadian clock.


Assuntos
Expressão Gênica/fisiologia , Sequências Hélice-Alça-Hélice/genética , Camundongos/genética , Núcleo Supraquiasmático/fisiologia , Transativadores/genética , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Masculino , Camundongos Endogâmicos C57BL
20.
Genomics ; 55(2): 248-51, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9933574

RESUMO

Recent efforts to clone further members of the melatonin receptor family have led to the identification of a novel G-protein-coupled receptor in human pituitary. This receptor, referred to as H9, is clearly related to high-affinity melatonin receptors yet unable to bind this hormone. We now report the cloning and expression of the cDNA encoding the H9 receptor in mice. The mouse clone encodes a protein of 591 amino acids that shares 74% amino acid identity with the human receptor and is unable to bind 2-[125I]iodomelatonin when transiently expressed in COS-7 cells. We also determined the chromosome loci of the human and mouse H9 receptor genes. Both genes were found to be X-linked: radiation hybrid mapping revealed that the human H9 gene (GPR50) is localized to Xq28. The mouse gene (Gpr50) was determined to lie in the proximal portion of chromosome X by means of interspecific backcross analysis. These loci might be relevant to genetically based neuroendocrine disorders.


Assuntos
Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Cromossomo X , Sequência de Aminoácidos , Animais , Células COS , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...